Problem 1 (2,5 points) Consider the matrices

$$
M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right), \quad M^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

Suppose that M and M^{\prime} are the matrices associated with the linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with respect to different bases:
M is the matrix associated with f with respect to the bases $\mathcal{B}_{1}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of \mathbb{R}^{2} and
$\mathcal{B}_{2}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ of \mathbb{R}^{3}.

- M^{\prime} is the matrix associated with f with respect to the bases $\mathcal{B}_{1}^{\prime}=\mathcal{B}_{1}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of \mathbb{R}^{2} and $\mathcal{B}_{2}^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ of \mathbb{R}^{3}
Moreover, suppose that $\mathbf{v}_{2}=\mathbf{u}_{1}+\mathbf{u}_{2}$. Obtain the matrix of change of bases from \mathcal{B}_{2}^{\prime} to \mathcal{B}_{2}.

We are asked to obtain the matrix

$$
\underset{B_{2} \leftarrow B_{2}^{\prime}}{P}=\left(\left[\bar{v}_{1}\right]_{B_{2}}\left[\bar{v}_{2}\right]_{B_{2}}\left[\bar{v}_{2}\right]_{B_{2}}\right) .
$$

This means that we need to write the elements of B_{2}^{\prime} in terms of B_{2}. We try to obtain this information from the matrices M and M^{\prime}.
By definition of associated matrices:
$M=\left(\left[f\left(\bar{e}_{1}\right)\right]_{B_{2}}\left[f\left(\bar{e}_{2}\right)\right]_{B_{2}}\right)$ and

$$
M^{\prime}=\left(\left[f\left(\bar{e}_{L}\right)\right]_{B_{2}^{\prime}}\left[f\left(\bar{e}_{2}\right)\right]_{B_{2}^{\prime}}\right) .
$$

So we know how to write $f\left(\bar{e}_{1}\right)$ and $f\left(\bar{e}_{2}\right)$
in terms of B_{2} because $\left[f\left(\bar{e}_{1}\right)\right]_{B_{2}}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left[f\left(\bar{e}_{2}\right)\right]_{B_{2}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ are the columns of M, and how to write $f\left(\bar{e}_{1}\right)$ and $f\left(\bar{e}_{2}\right)$ in terms of B_{2}^{\prime} because $\left[f\left(\bar{e}_{1}\right)\right]_{B_{2}^{\prime}}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left[f\left(\bar{e}_{2}\right)\right]_{B_{i}^{\prime}}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are the columns of M^{\prime}. Using this information, we obtain the following equations:

$$
\begin{aligned}
& f\left(\bar{e}_{1}\right)=\bar{u}_{1}+\bar{u}_{2}+\bar{u}_{3}=\bar{v}_{1}+\bar{v}_{3} \\
& f\left(\bar{e}_{2}\right)=\bar{u}_{1}=\bar{v}_{2}+\bar{v}_{3} .
\end{aligned}
$$

Together with the equation $\bar{v}_{2}=\bar{u}_{1}+\bar{u}_{2}$, now we can find the expressions of $\bar{v}_{1}, \sigma_{2}, \bar{v}_{3}$ in terms of $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\left(\bar{B}_{2}^{\prime}\right.$ in terms of $\left.B_{2}\right)$.
$\left.\begin{array}{rl}\bar{v}_{1}+\bar{v}_{3} & =\bar{u}_{1}+\bar{u}_{2}+\bar{u}_{3} \\ \bar{v}_{2} & =\bar{u}_{1}+\bar{u}_{2} \\ \bar{v}_{2}+\bar{v}_{3} & =\bar{u}_{1}\end{array}\right\} \Rightarrow \bar{u}_{1}+2 \bar{u}_{2}+\bar{u}_{3}$.

Therefore, $\quad \underset{B_{2}-B_{2}^{\prime}}{P}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 0\end{array}\right)$
$\overline{\text { Problem } 2}\left(2,5\right.$ points) Consider the linear mappings $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
Suppose that:

$$
\operatorname{ker}(f)=\left\{\binom{x}{y}: x-2 y=0\right\}, f\binom{1}{1}=\binom{1}{-2}, g \circ f\binom{5}{2}=\binom{1}{-3} .
$$

Find $g \circ f\binom{0}{1}$.¿Is f injective? ¿Is f surjective?

One of many ways to solve this problem is to write

$$
\begin{aligned}
\binom{1}{-3} & =g \circ f\binom{5}{2}=g \circ f\left[5\binom{1}{0}+2\binom{0}{1}\right] \\
& =5 g \circ f\binom{1}{0}+2 g \circ f\binom{0}{1}
\end{aligned}
$$

because goo is linear. If we are able to find $g_{0} f\binom{1}{0}$, then we can solve for $g_{\circ}\binom{0}{1}$.

We now study the information given about f.
A basis for $\operatorname{ker}(f)$ is $\left\{\binom{2}{1}\right\}$ So $f\binom{2}{1}=\binom{0}{0}$. Also $f\binom{1}{1}=\binom{1}{-2}$ (given).
then

$$
\left.\left.\begin{array}{ll}
2 f\binom{1}{0}+f\binom{0}{1}=\binom{0}{0} \\
f\binom{1}{0}+f\binom{0}{1}=\binom{1}{-2}
\end{array}\right\} \begin{array}{ll}
f\binom{1}{0}=\binom{-1}{2} \\
1
\end{array}\right)=\binom{2}{-4} .
$$

Notice that $f\binom{1}{0}=\frac{-1}{2} f\binom{0}{1}$
Then

$$
\binom{1}{-3}=5 g \circ f\binom{1}{0}+2 g \circ f\binom{0}{1}=\binom{-\frac{5}{2}+2}{2} ~ g \circ f\binom{0}{1}
$$

and $g \circ f\binom{0}{1}=\binom{-2}{6}$

Notice that $B=\left\{\binom{1}{1},\binom{2}{1}\right\}$ is a basis of \mathbb{R}^{2} so we know $M_{f}^{B_{B} B}=\left(\begin{array}{cc}1 & 0 \\ -2 & 0\end{array}\right)$.
$M_{f}^{B, B}$ has only one pivot column and one pivot row. So:
f is neither injective nor surjective

Problem $3\left(2,5\right.$ points) Let $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ 0 & b & 0 \\ a-1 & 0 & -1\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad a, b \in \mathbb{R}$. Determine the values a and b such that \mathbf{x} is an eigenvector of A and A is not diagonalizable.

We have two important data:
(1.) \bar{x} is an eigenvector of A.
(2.) A is not diagonalizable.

From (1.) we know

$$
\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & b & 0 \\
a-1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
3 \\
0 \\
a-1
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \leftarrow \lambda=3 \text { (row } 1 \text {) }
$$

where λ is the eigenvalue associated with \bar{x}. This means that $\lambda=3$ and $a=1$.

Now we know that $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1\end{array}\right)$
and that the eigenvalues are $3, b,-1$ (because A is triangular).
Since A is not diagonalizable, we know that the eigenvalues are not distinct (otherwise A is diagonalizable). So either $b=3$ or $b=-1$. We study both cases:

Case I $b=3$:
Since A is not diagonalizable, $\operatorname{dim} E_{3}<2 \Leftrightarrow \operatorname{dim} E_{3}=1 \Leftrightarrow \operatorname{rank}(A-3 I)=2$.
(rank $(A-3 I) \Leftrightarrow$ only one non-pivot column). Is this true for $b=3$?

$$
\begin{gathered}
A-3 I \\
(b-3)
\end{gathered}=\left(\begin{array}{llc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -4
\end{array}\right) \sim\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

and $\operatorname{rank}(A-3 I)=2$.
So A is not diagonalizable when $b=3$ and $a=1$.

Case II $b=-1$:
A is not diaganalizable $\Leftrightarrow \operatorname{dim} E_{-1}<2$

$$
\Leftrightarrow \operatorname{rank}(A+I)=2 .
$$

Is this true for $b=-1$?

$$
\begin{aligned}
& A+I \\
& (b=-1)
\end{aligned}=\left(\begin{array}{lll}
4 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 / 4 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So $\operatorname{rank}(A+I)=1$. This means that A is diagonalizable when $b=-1$ which is a contradiction. Then $b=-1$ is discarded.

In conclusion: $a=1$ and $b=3$

Problem $4\left(2,5\right.$ points) In \mathbb{R}^{4}, consider the following subspaces:

$$
U=\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4}: \begin{array}{l}
x-y-z+w=0 \\
x+y-z-w=0
\end{array}\right\}, \quad V_{\alpha}=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
\alpha \\
1 \\
-1 \\
-1
\end{array}\right)\right\}, \alpha \in \mathbb{R}
$$

Determine the value of the parameter α such that $V_{\alpha}=U^{\perp}$. For this value of α, find the
\qquad orthogonal projection onto U^{\perp}, of the vector $\mathbf{x}=\left(\begin{array}{l}3 \\ 0 \\ \alpha \\ 4\end{array}\right)$.

Remark: Use the usual scalar product in \mathbb{R}^{4}.

We can apprach this problem better if we knew a basis for U.

$$
U=\operatorname{ker}\left(\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)\right\}
$$

In order for V_{α} to be equal to U^{+}, each element of a basis of v_{α} must be orthogonal to each element of U.
Notice that $\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right) \perp U$. Now, we compute

$$
\begin{aligned}
& \left(\begin{array}{llll}
\alpha & 1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)=\alpha-1 \\
& \left(\begin{array}{llll}
\alpha & 1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)=0
\end{aligned}
$$

Therefor $V_{\alpha}=U^{\perp}$ if and only if

$$
\alpha=1
$$

Now, we compute the orthogonal projection of \bar{x} onto U^{\perp}. We need an orthogonal basis for U^{\perp}. The basis we already have is not orthogonal, so we use Gram-Schmiatt to find one:

$$
\left.\begin{array}{l}
\bar{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \\
\bar{e}_{2}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)-\binom{\left(\begin{array}{lll}
1 & 1 & -1
\end{array}\right)}{\left\|\bar{e}_{1}\right\|^{2}} \bar{e}_{1} \\
e_{1}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right), ~ 又
$$

So $\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ is an orthogonal basis for U^{+}.
The orthogonal projection of \bar{x} onto U^{+}is

$$
\begin{aligned}
\hat{x} & =\frac{\left\langle\bar{x}_{1} \bar{e}_{1}\right\rangle}{\left\|\bar{e}_{1}\right\|^{2}}+\frac{\left\langle\bar{x}_{1} \bar{e}_{2}\right\rangle}{\| \bar{e}_{2}} \|\left(\begin{array}{c}
\left\|\bar{e}_{2}\right\|^{2} \\
-1 \\
2
\end{array}\right) \\
& =\frac{2}{2} \bar{e}_{1}-\frac{4}{2} \bar{e}_{2}=\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)
\end{aligned}
$$

Notice that $\hat{x} \perp U$, so this answer is correct.

